Things that may not be obvious - part I - maths

a \cdot b
ab
\frac{a}{b}
ab
\begin{cases}
x =\sqrt{2} \\
y =\sqrt[3]{8} \\

\end{cases}
{x=2y=83
a \oplus b || a \odot b
ab || ab
\bar{a} + \bar{b} + \bar{cd}, but \overline{a+b+cd}
a¯+b¯+cd¯, but  a+b+cd
A \cup B \cap C \in \mathbb{R}^2
ABCR2
\lnot a \lor b \land c \implies d \impliedby e
¬abcde
2+1 = 3\iff 3-1 = 2 
2+1=331=2
\underset{\underset{jkl}{qwe}}{\overset{\overset{xyz}{def}}{abc}} \equiv \overunderset{def}{qwe}{abc}
abcdefzxcqwejklabcqwedef
\begin{align}
x+y&=z\\
x&=z+a\\
0&=2
\end{align}
x+y=zx=z+a0=2